Abstract

In fuzzy regression, that was first proposed by Tanaka et al. (Eur J Oper Res 40:389–396, 1989; Int Cong Appl Syst Cybern 4:2933–2938, 1980; IEEE Trans SystMan Cybern 12:903–907, 1982), there is a tendency that the greater the values of independent variables, the wider the width of the estimated dependent variables. This causes a decrease in the accuracy of the fuzzy regression model constructed by the least squares method. This paper suggests the least absolute deviation estimators to construct the fuzzy regression model, and investigates the performance of the fuzzy regression models with respect to a certain errormeasure. Simulation studies and examples show that the proposed model produces less error than the fuzzy regression model studied by many authors that use the least squares method when the data contains fuzzy outliers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.