Abstract
To address the shortcomings of traditional reliability theory in characterizing the stability of deep underground structures, the advanced first order second moment of reliability was improved to obtain fuzzy random reliability, which is more consistent with the working conditions. The traditional sensitivity analysis model was optimized using fuzzy random optimization, and an analytical calculation model of the mean and standard deviation of the fuzzy random reliability sensitivity was established. A big data hidden Markov model and expectation-maximization algorithm were used to improve the digital characteristics of fuzzy random variables. The fuzzy random sensitivity optimization model was used to confirm the effect of concrete compressive strength, thick-diameter ratio, reinforcement ratio, uncertainty coefficient of calculation model, and soil depth on the overall structural reliability of a reinforced concrete double-layer wellbore in deep alluvial soil. Through numerical calculations, these characteristics were observed to be the main influencing factors. Furthermore, while the soil depth was negatively correlated, the other influencing factors were all positively correlated with the overall reliability. This study provides an effective reference for the safe construction of deep underground structures in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.