Abstract

AbstractThe lower extremity rehabilitation exoskeleton is mainly used to help patients with movement disorders complete rehabilitation training. For the human-machine interaction problem of the lower limb rehabilitation exoskeleton, a fuzzy radial-based impedance (RBF-FVI) controller is proposed in this study. A six degree of freedom (DOF) lower extremity rehabilitation exoskeleton was developed, and the human-machine coupling dynamics model was established. To realize the compliance control of the human-machine coupling system, a novel RBF-FVI controller is designed, which includes an inner-loop fuzzy position control module and an outer-loop impedance control module. The inner-loop fuzzy position control module is mainly used to achieve the tracking control of the desired training trajectory and position adjustment amount. The outer-loop impedance control module regulates the impedance parameters and compensates for the uncertainty terms. The superiority of the proposed controller in trajectory following is verified through simulation and comparison tests. The hardware test of the human-machine coupling system was carried out, and the test results showed that the subject and the exoskeleton system could realize a coordinated and smooth movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call