Abstract
Navigation and control of an unmanned aerial vehicle (UAV) is a challenging problem and could be framed as a Reinforcement Learning (RL) task. Herein, we propose to use reinforcement learning for designing a UAV autopilot based on the Fuzzy Q Learning (FQL) approach. Proposed control scheme envisages an amalgamation of proportional (P) control that stabilizes the UAV and an action triggering Fuzzy Inference system (FIS) control that learns the correct control action to achieve the desired flight trajectory for a UAV flight. We test the proposed RL based UAV control for three cases: (i) Altitude control (ii) Trajectory Tracking, and (iii) Reconnaissance flight of a UAV. Results demonstrate the viability and effectiveness of a UAV autopilot designed using FQL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.