Abstract
Rough set theory has proven to be an efficient tool for modeling and reasoning with uncertainty information. By introducing probability into fuzzy approximation space, a theory about fuzzy probabilistic approximation spaces is proposed in this paper, which combines three types of uncertainty: probability, fuzziness, and roughness into a rough set model. We introduce Shannon's entropy to measure information quantity implied in a Pawlak's approximation space, and then present a novel representation of Shannon's entropy with a relation matrix. Based on the modified formulas, some generalizations of the entropy are proposed to calculate the information in a fuzzy approximation space and a fuzzy probabilistic approximation space, respectively. As a result, uniform representations of approximation spaces and their information measures are formed with this work
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.