Abstract

Fuzzy Petri nets (FPNs) are an important modeling tool for knowledge representation and reasoning, which have been extensively used in a lot of fields. However, the conventional FPN models have been criticized as having many shortcomings in the literature. Many different models have been suggested to enhance the performance of FPNs, but deficiencies still exist in these models. First, various types of uncertain knowledge information provided by domain experts are very hard to be modeled by the existing FPN models. Second, the traditional FPNs determine the results of knowledge reasoning using the min, max, and product operators, which may not work well in many practical applications. In this paper, we propose a new type of FPN model based on intuitionistic fuzzy sets and ordered weighted averaging operators to deal with the problems and improve the effectiveness of the conventional FPNs. Moreover, a max-algebra-based reasoning algorithm is developed in order to implement the intuitionistic fuzzy reasoning formally and automatically. Finally, a case study concerning fault diagnosis of aircraft generator is presented to demonstrate the proposed intuitionistic FPN model. Numerical experiments show that the new FPN model is feasible and quite effective for knowledge representation and reasoning of intuitionistic fuzzy expert systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call