Abstract
Hydrogen and light hydrocarbon components are essential resources of the refinery. The optimization of the refinery hydrogen system and recovery of the light hydrocarbon components contained in the gas streams are key strategies to reduce the operating costs for sustainable development. Many research efforts have been focused on the optimization of single impurity hydrogen network, and the flowrates of the hydrogen sources and sinks are assumed to be constant. However, their flowrates vary along with the quality of crude oil and refinery processing plans. A general superstructure of multicomponent refinery hydrogen network is proposed, which considers four components, namely H 2 , H 2 S, CH 4 and C 2 + , as well as the flowrate variations of hydrogen source and hydrogen sink. The mathematical model based on the superstructure is developed with objective functions, including the minimization of total annualized cost and the maximization of overall satisfaction of the hydrogen network. Moreover, the model considers the removal of hydrogen sulfide and the recovery of light hydrocarbon components ( i . e ., C 2 + ) in the optimization. To verify the applicability of the proposed mathematical model, a simplified industrial case study with four scenarios is solved. The optimization results show that the economic benefit can be maximized by considering both the direct reuse of gas streams from high-pressure separator (HP gas stream) and from low-pressure separator (LP gas stream) and the recovery of the light hydrocarbon streams. The fuzzy optimization method can be used to guide the optimal design of the refinery hydrogen system with multi-period variable flowrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.