Abstract

This study introduces an innovative control strategy utilizing a nonsingular fast sliding mode technique tailored for robotic systems. The core of this approach lies in the development of a type-2 fuzzy logic-based nominal model, meticulously designed to accurately approximate the dynamics of the real system while adeptly handling the variability in system parameters. This method marks a departure from conventional approaches by inferring the switch signal for type-2 adaptive fuzzy systems, a critical step in achieving superior tracking performance without the necessity for extensive knowledge of the system's upper bounds in uncertainties and external disturbances. The efficacy of the proposed control law is rigorously validated through a series of simulations, encompassing a variety of initial conditions and reference signals, thereby demonstrating its robust performance capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.