Abstract

The current work has proposed an approach to the controller design of a fuzzy non-singular terminal sliding mode (NTSM) for a type of planar systems with input saturation. On the basis of a modified version of NTSM, a category of saturated NTSM controller is first constructed to ensure that the states can reach the sliding surface and finite-time converge to the origin. On this basis, a fuzzy logic controller including two fuzzy input variables and a fuzzy output variable is developed to adaptively adjust the control gain such that the gain of the NTSM controller can be automatically minimized. This also implies that the chattering phenomenon encountered by most conventional sliding mode control (SMC) schemes can be significantly attenuated without sacrificing inherent properties. Finally, in comparison with a traditional SMC method, the superiority of the presented algorithm is confirmed by the comparative simulation results in terms of chattering alleviation and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.