Abstract

This paper deals with the tracking control problem of a manipulator system with unknown and changing dynamics. In this study, a fuzzy logic controller (FLC) in the feedback configuration is proposed, and an efficient dynamic recurrent neural network (DRNN) in the feedforward configuration is developed. The DRNN, which possesses the ability of approaching arbitrary nonlinear function, is utilized to approximate the inverse dynamics of the robotic manipulator system. Based on the outputs of the FLC, parameter updating equations are derived for the adaptive DRNN model. The analysis of the stability of the system is also carried out. Finally, comparisons between fuzzy control and the proposed controller are carried out. The results demonstrate remarkable performance of the proposed controller for the two-link flexible manipulator system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.