Abstract
A novel fuzzy neural network (FNN) model for invariant pattern recognition is presented that combines fuzzy set reasoning and artificial neural network techniques. The presented FNN consists of three blocks: fuzzifier, fuzzy perceptron, and defuzzifier. It fuzzifies the input patterns and trains the interconnection weights according to membership functions instead of traditional binary values. The proposed FNN has been applied to 2-D binary-image pattern recognition under shift and some other types of distortions. In comparison with the classical multilayer perceptron, the FNN possesses a higher recognition rate and is more robust to input distortions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.