Abstract

. In the coal-rock interface recognition (CIR) technology, signal process and recognition are the key parts. A method for CIR based on BP neural networks and fuzzy technique was proposed in this paper. By using the trail-and-error, the hidden layer dimension of the network was decided. Also the network training and weight modification were studied. In order to get a higher identification ratio, fuzzy neural networks (FNN) based data fusion was studied. For CIR, the structure and algorithm of FNN were determined. The results indicated that the test data can be used to train and simulate with the neural network and FNN. And the proposed method can be used in CIR with a higher recognition ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.