Abstract
In this paper, a class of uncertain chaotic systems preceded by unknown backlash nonlinearity is investigated. Combining backstepping technique with fuzzy neural network identifying, an adaptive backstepping fuzzy neural controller (ABFNC) for uncertain chaotic systems with unknown backlash is proposed. The proposed ABFNC system is comprised of a fuzzy neural network identifier (FNNI) and a robust controller. The FNNI is the principal controller utilized for online estimation of the unknown nonlinear function. The robust controller is used to attenuate the effects of the approximation error so that the stability and control performance of the closed-loop adaptive system is achieved always. Finally, simulation results show that the ABFNC can achieve favorable tracking performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.