Abstract
In this paper we compare the ability of a fuzzy neural network and a common back-propagation network to classify odour samples that were obtained by an electronic nose employing semiconducting oxide conductometric gas sensors. Two different sample sets have been analysed: first, the aroma of three blends of commercial coffee, and secondly, the headspace of six different tainted-water samples. The two experimental data sets provide an excellent opportunity to test the ability of a fuzzy neural network due to the high level of sensor variability often experienced with this type of sensor. Results are presented on the application of three-layer fuzzy neural networks to electronic nose data. They demonstrate a considerable improvement in performance compared to a common back-propagation network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.