Abstract

Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) are nature-inspired, swarm-based optimization algorithms respectively. Though they have been widely used for single-objective optimization since their inception, they suffer from premature convergence. Even though the hybrids of GSA and PSO perform much better, the problem remains. Hence, to solve this issue, we have proposed a fuzzy mutation model for two hybrid versions of PSO and GSA — Gravitational Particle Swarm (GPS) and PSOGSA. The developed algorithms are called Mutation based GPS (MGPS) and Mutation based PSOGSA (MPSOGSA). The mutation operator is based on a fuzzy model where the probability of mutation has been calculated based on the closeness of particle to population centroid and improvement in the particle value. We have evaluated these two new algorithms on 23 benchmark functions of three categories (unimodal, multimodal and multimodal with fixed dimension). The experimental outcome shows that our proposed model outperforms their corresponding ancestors, MGPS outperforms GPS 13 out of 23 times (56.52%) and MPSOGSA outperforms PSOGSA 17 times out of 23 (73.91%). We have also compared our results against those of some recently proposed optimization algorithms such as Sine Cosine Algorithm (SCA), Opposition-Based SCA, and Volleyball Premier League Algorithm (VPL). In addition, we have applied our proposed algorithms on some classic engineering design problems and the outcomes are satisfactory. The related codes of the proposed algorithms can be found in this link: Fuzzy-Mutation-Embedded-Hybrids-of-GSA-and-PSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.