Abstract
In actual lot-sizing production-to-order problems for recoverable remanufacturing systems, input data or parameters are often imprecise or fuzzy. This study develops a novel fuzzy multi-objective linear programming (FMOLP) model with a piecewise linear membership function to solve integrated, procurement/production, planning decision problems with fuzzy environments and deal with multi-component, multi-vendor, multi-source and multi-machines under recoverable remanufacturing systems. The initial FMOLP model developed in this study attempts to simultaneously minimize total costs and total lead times in relation to supplier capacity, lead time, lot release, machine yield and customer demand. The proposed FMOLP model provides a systematic framework that facilitates a fuzzy decision-making process, enabling a decision maker to interactively adjust search direction during the solution procedure to obtain the preferred satisfactory solution. To test the model's adequacy, an actual implementation of several scenarios was conducted using remanufacturing production systems. The analytical results presented in this study can help decision managers better understand systematic analysis and the potential for improving cost-effectiveness and lead time in terms of recoverable remanufacturing planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.