Abstract
The rising global carbon emissions from energy use in the water sectors highlight the need to research water supply allocation focusing on carbon footprint. This study introduced a non-exact optimization method for water resource allocation, focusing on the relationship between water supply and carbon emissions of energy consumption. It aimed to balance carbon emission reduction and minimize water supply costs, particularly emphasizing the mitigation of carbon emissions from unconventional water sources. This method can handle uncertainties in the objective function and constraint conditions, and provide decision-makers with optimal water resource allocation strategies under different confidence levels (λ) and optimistic-pessimistic parameters (γ). The results showed that: (1) under different γ values, the water shortage of Weihai was [0.99, 1.13] × 108 m3, but the degree of water shortage was greater under different λ values; (2) increasing local water availability can reduce carbon emissions in the water supply process more effectively than increasing the proportion of clean energy generation; (3) in an ideal situation, the carbon emissions per unit of seawater desalination can be reduced to around [0.68, 0.83] kg/m3. The model can provide reasonable management strategies for water supply systems and handle multiple uncertainties in the decision-making process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.