Abstract
An approach to the formulation of fuzzy if-then rules based on clustering objective functions is proposed. The membership functions are then calibrated with the generalized neural networks technique to achieve a desired input-output mapping. The learning procedure is basically a gradient-descent algorithm. A Kalman filter algorithm is used to improve the overall performance. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.