Abstract

There are a lot of uncertainties in planning and operation of electric power system, which is a complex, nonlinear, and non-stationary system. Advanced computational methods are required for planning and optimization, fast control, processing of field data, and coordination across the power system for it to achieve the goal to operate as an intelligent smart power grid and maintain its operation under steady state condition without significant deviations. State-of-the-art Smart Grid design needs innovation in a number of dimensions: distributed and dynamic network with two-way information and energy transmission, seamless integration of renewable energy sources, management of intermittent power supplies, real time demand response, and energy pricing strategy. One of the important aspects for the power system to operate in such a manner is accurate and consistent short term load forecasting (STLF). This paper presents a methodology for the STLF using the similar day concept combined with fuzzy logic approach and swarm intelligence technique. A Euclidean distance norm with weight factors considering the weather variables and day type is used for finding the similar days. Fuzzy logic is used to modify the load curves of the selected similar days of the forecast by generating the correction factors for them. The input parameters for the fuzzy system are the average load, average temperature and average humidity differences of the forecasted previous day and its similar days. These correction factors are applied to the similar days of the forecast day. The tuning of the fuzzy input parameters is done using the Particle Swarm Optimization (PSO) and Evolutionary Particle Swarm Optimization (EPSO) technique on the training data set of the considered data and tested. The results of load forecasting show that the application of swarm intelligence for load forecasting gives very good forecasting accuracy. Both the variants of Swarm Intelligence PSO and EPSO perform very well with EPSO an edge over the PSO with respect to forecast accuracies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call