Abstract

Accurate representation of the atomic force microscopy (AFM) system is not only necessary to achieve control objectives, but it is also beneficial for detecting the nanomechanical properties of the samples. To this end, this paper addresses the issue of controller design for the AFM system based on an accurate nonaffine nonlinear distributed-parameters model in which flexibility and distributed mass effects of the microcantilever beam are considered properly. First, a T-S fuzzy model is derived for this dynamical model of the AFM system in order to simplify the procedure of controller design. Then, a fuzzy model-based controller is designed to suppress the chaos and attenuate the disturbance in the AFM system through the linear matrix inequality (LMI) formulation. Moreover, by considering some criteria for disturbance rejection and transient performance, and some constraints on control input and states, new stabilization conditions are proposed based on a fuzzy Lyapunov function. Finally, simulation results are represented to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.