Abstract
The use of a learning control system to maintain adequate performance of a cargo ship autopilot when there are process disturbances or variations is examined. The objective is to make an initial assessment of what advantages a fuzzy learning control approach has over conventional adaptive control approaches. The simulation results indicate that the fuzzy model reference learning controller (FMRLC) has several potential advantages over model reference adaptive control (MRAC), including improved convergence rates, use of less control energy, enhanced disturbance rejection properties, and lack of dependence on a mathematical model. Using the comparative analysis, the authors discuss how the well-developed concepts in conventional adaptive control can be used to evaluate fuzzy learning control techniques. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.