Abstract
This article addresses the event-triggered asynchronous fault detection (FD) problem of fuzzy-model-based nonlinear Markov jump systems (MJSs) with partially unknown transition probabilities. For this objective, the nonlinear plant is modeled as an interval type-2 (IT2) fuzzy MJS with the aid of the IT2 fuzzy sets capturing the uncertainties of the membership functions. An adaptive event-triggered scheme is introduced to bring down the costs of the communication network from the system to the fuzzy fault detection filter (FDF), in which the triggering parameter can be adaptively tuned with the system dynamics. A hidden Markov model (HMM) is employed to characterize the asynchronous phenomenon between the system and the FDF. Unlike the existing results, the transition probabilities of the plant and the FDF are allowed to be partially known. By using the Lyapunov and the membership-function-dependent methods, the existence conditions of the FDF are derived. Finally, the proposed FD methods are verified by a numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.