Abstract

In this paper, a fuzzy memory-based coupling sampled-data control (SDC) is designed for nonlinear systems through the switched approach. Compared with the usual SDC scheme, by employing the Bernoulli sequence, a more general coupling switched SDC that involving the signal transmission delay is designed. The Lyapunov–Krasovskii functional (LKF) is presented with the available characteristics of the membership function, and a coupling sampling pattern, for the T-S fuzzy systems. Based on LKF, together with time derivative information of membership function, and the generalized N-order free-matrix-based inequality, the suitable conditions are obtained in terms of linear matrix inequalities (LMIs) for guaranteeing the asymptotic stability and stabilization of the concerned system. Then, the desired fuzzy coupling SDC gain is attained from the solvable LMIs. In the end, two examples are given to validate the derived theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.