Abstract

In this study, a fuzzy logic self-tuning PID controller based on an improved disturbance observer is designed for control of the ball mill grinding circuit. The ball mill grinding circuit has vast applications in the mining, metallurgy, chemistry, pharmacy, and research laboratories; however, this system has some challenges. The grinding circuit is a multivariable system in which the high interaction between loops, the variation of the system parameters with time, and time delay are some of the problems that pose a challenge. Since the controller parameters are determined offline in classic PID control, these gains are unchangeable and cannot overcome the mentioned challenges in this system. Hence, a fuzzy logic self-tuning PID controller, which is a combination of fuzzy logic and a conventional PID controller, is proposed to control the grinding system, especially in the presence of model mismatch and disturbances. In addition, in order to solve the system challenges, a multivariable control approach based on an improved disturbance observer is proposed to suppress the effects of the disturbances. The most important feature of the algorithm proposed in this paper as the combination of fuzzy logic self-tuning PID and improved disturbance observer is its ability to eliminate system interaction, attenuate internal and external disturbances, and compensate the effect of system uncertainty on the performance of the ball mill grinding circuit. Simulation results in the cases of the set-point change in particle size and circulating load in the presence of model mismatch and external disturbances confirmed the controller performance compared to other controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call