Abstract

In recent decades, advanced power-electronics-based control techniques have been widely used to electric drives for the traction of modern locomotives. However, the dynamic response of such locomotives under transient conditions due to external perturbations has not been fully investigated. In this work, an integrated dynamic model for a typical Co-Co locomotive/track system is developed to provide predictive simulations of the motion and forces transmitted throughout the whole locomotive dynamic system. The model integrates a two dimensional (2D) longitudinal-vertical locomotive structural vibration model, wheel/rail contact mechanics using Polach’s creep force model, a simplified dynamic traction model and a fuzzy logic creep controller to simulate the transient response to a change in friction conditions. It is found that the proposed fuzzy logic controller has the advantage over a PI controller in terms of achieving higher tractive force under transient contact conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.