Abstract

A comparison between three types of control algorithms for a 1.5 MW horizontal axis fixed speed wind turbine is presented. A fuzzy logic proportional integral control (Fuzzy PI), a fuzzy logic control (FLC) and a classical proportional integral (PI) control are tested. A robustness test by adding noise to the wind speed signal is also performed. Design of the proposed Fuzzy PI control algorithm was achieved via tuning with the Ziegler-Nichols approach, using the same methodology for the PI controller tuning with the difference of incorporating a fuzzy logic section. The fuzzy logic section selects the desired PI gains according to wind speed with a smooth control transition. Fuzzy logic control was designed to obtain maximum power extraction at low wind speeds and to limit power extraction at a 1.5 MW nominal power set point. Aerodynamic characteristics of the wind turbine were studied in order to gain a basic understanding of the system dynamics. A 1.5 MW horizontal axis wind turbine model was designed for tuning as well as simulation performance studies. Results demonstrate the effectiveness of all techniques, achieving a controlled power extraction near the nominal value for the three controllers and maximum power extraction in low wind speeds for the Fuzzy PI and FLC control algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call