Abstract
Renewable energy sources have emerged as a potential option to fulfill the growing need for power because they are less harmful to the environment and are abundantly available in nature. Among various alternative energy sources, Photo Voltaic (PV) systems have gained increasing popularity because of the abundant supply of solar power. The maximum power point tracking technique was employed to maximize the power output of the PV array. However, when transferring a significant amount of power from a PV array to the power grid, several power quality concerns must be addressed, particularly those related to the actual and reactive power flows. Connecting photovoltaic arrays to the power grid inevitably leads to power quality issues. This study proposes a novel control approach aimed at tackling these problems and effectively managing the flow of electricity. To achieve efficient regulation of the actual and reactive power flows in grid-connected solar systems, a fuzzy Genetic Algorithm (GA) cascaded controller is utilized in conjunction with a flexible AC transmission system device known as the Unified Power Flow Controller. The fuzzy logic controller generates a control vector as its output, which is fine-tuned using a GA technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.