Abstract

Disparity maps generated through stereo matching algorithms possess the capacity to provide depth information, when at least two or more images of a scene taken from different viewpoints, are presented. This is a computationally complex task and the presence of radiometric differences, such as exposure variations, in the images only further complicates the stereo matching problem. The authors attempt to overcome this problem and try to extract dense disparity maps from a pair of stereo images using a combination of different data cost metrics followed by a fuzzy disparity selector. The images are preprocessed into small patches of pixels, such that pixels in each patch have similar intensities, before being subjected to the stereo matching algorithm. The effect of the number of segments and the tuning parameter ‘α’, on the various exposure conditions is studied and the performance is compared with other methods that try to tackle the problem of stereo matching under similar conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.