Abstract

In this paper, adaptive channel borrowing approach fuzzy neural networks for load balancing (ACB-FNN) is presented to maximized the number of served calls and the depending on asymmetries traffic load problem. In a wireless network, the call's arrival rate, the call duration and the communication overhead between the base station and the mobile switch center are vague and uncertain. A new load balancing algorithm with cell involved negotiation is also presented in this paper. The ACB-FNN exhibits better learning abilities, optimization abilities, robustness, and fault-tolerant capability thus yielding better performance compared with other algorithms. It aims to efficiently satisfy their diverse quality-of-service (QoS) requirements. The results show that our algorithm has lower blocking rate, lower dropping rate, less update overhead, and shorter channel acquisition delay than previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.