Abstract

This paper is devoted to design a control system for robot manipulator to optimize motor torque due to external impulsive loading exerted on the manipulator. Under impulsive loading, overloading may occur in the absence of any monitoring on the torque. To avoid the overloading, impedance control is proposed as a force control strategy. Here impedance control based on force feedback of which has hit the end-effector modifies the reference trajectory. In fact, instead of resisting against impulsive loading up to extreme power of the motor, the proposed design generates small movements in the direction of impact. Therefore, the motor produces less torque in comparison to the absence of impedance control. A supervisory system assisting fuzzy logic has been used to adapt impedance controller parameters with various impact conditions. The simulation result confirms the improvement of the manipulator behavior which yields sensible reduction in motor developed torque in comparison to single PID controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.