Abstract

The high dimensionality of genotype data available for genomic evaluations has presented a motivation for developing strategies to identify subsets of markers capable of increasing the accuracy of predictions compared to the current commercial single nucleotide polymorphism (SNP) chips. In this simulation study, an algorithm for combining statistics used in the preselection and prioritization of SNP markers from a high-density panel (1.3 million SNPs) into a composite "fuzzy" ranking score based on a Sugeno-type fuzzy inference system (FIS) was developed and evaluated for performance in preselection for genomic predictions. FST scores, and p-values were evaluated as inputs for the FIS. The accuracy of genomic predictions for fuzzy-score-preselected panel sizes of 1-50 k SNPs ranged from -0.4-11.7 and -0.3-3.8% higher than FST and p-value preselection, respectively. Though gains in prediction accuracies using only two inputs to the FIS were modest, preselection based on fuzzy scores yielded more accurate predictions than both FST scores and p-values for the majority of evaluated panel sizes under all genetic architectures. FIS have the potential to aggregate information from multiple criteria that reflect SNP-trait associations and biological relevance in a flexible and efficient way to yield higher quality genomic predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.