Abstract

In this paper, a general procedure to deal with uncertainties in each stage of consequence modeling is presented. In the first part of the procedure, the sources of uncertainty are identified and confirmed by sensitivity analysis for the source term, dispersion, physical effects and consequence analysis. While the second part comprises an application of the fuzzy logic system to each step of the consequence modeling. The proposed procedure is verified by the case study for a pool fire liquefied natural gas (LNG) on water. The results in terms of thermal radiation distances are compared with calculations obtained using the Monte Carlo method and with experimental data. The consequence model based on fuzzy logic approach provides less uncertain and more precise results in comparison to the deterministic consequence model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.