Abstract
In the classical Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP), the decision maker (DM) gives the pair-wise comparisons of alternatives with crisp truth degree 0 or 1. However, in the real world, DM is not sure enough in all comparisons and can express his/her opinion with some fuzzy truth degree. Thus, DM's preferences are given through pair-wise comparisons of alternatives with fuzzy truth degrees, which may be represented as trapezoidal fuzzy numbers (TrFNs). Considered such fuzzy truth degrees, the aim of this paper is to develop a new fuzzy linear programming technique for solving multiattribute decision making (MADM) problems with multiple types of attribute values and incomplete weight information. In this method, TrFNs, real numbers, and intervals are used to represent the multiple types of decision information. The fuzzy consistency and inconsistency indices are defined as TrFNs due to the alternatives’ comparisons with fuzzy truth degrees. Hereby a new fuzzy linear programming model is constructed and solved by the possibility linear programming method with TrFNs developed in this paper. The fuzzy ideal solution (IS) and the attribute weights are then obtained. The distances of alternatives from the fuzzy IS can be calculated to determine their ranking order. The implementation process of the method proposed in this paper is illustrated with a strategy partner selection example. The comparison analyzes show that the method proposed in this paper generalizes the classical LINMAP, fuzzy LINMAP and possibility LINMAP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.