Abstract
Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The first is based on Tanaka's linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new types of fuzzy least-squares algorithms with a noise cluster for interactive fuzzy linear regression models are proposed. These algorithms are robust for the estimation of fuzzy linear regression models, especially when outliers are present. Numerical examples are given to detail the effectiveness of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.