Abstract
To improve the assessment capability of power transformers, this paper proposes a new intelligent decision support system based on fuzzy learning vector quantization (HVQ) networks. In constructing the system, a fuzzy-based classifier is designed to divide the historical data for dissolved gas analysis (DGA) into various categories with different levels of gas attributes. For each category of gas attributes, a learning vector quantization (LVQ) network is trained to be responsible for the classification of the potential faults due to insulation deterioration. The assessment approach has been tested on the DGA data from Taiwan Power Company (TPC) and compared with the previous fuzzy diagnosis system and the existing multi-layered backpropagation based artificial neural networks (BPANN) methods. Remarkable classification accuracy and far less training efforts of the proposed approach are achieved in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.