Abstract

There exist some processes difficult to control as the chemical ones, a common problem takes place when the output cannot be measured on-line, and so, closed-loop control cannot be implemented. In this work an iterative learning control type proportional-derivative is analyzed and theoretical results are shown, this control is applied to a biological reactor to degrade phenol by working in discontinuous batch state, as the measures of the substrata concentrations are taken by hand, it was proposed to have a sample time of one hour. To guarantee convergence and to improve the control, cubic splines were used to interpolate the measures. Fuzzy logic was used to compute the control gains used to build the control signal. Simulation results are shown and the control signals are presented through iterations, here it is possible to see that the error is smaller using fuzzy logic to compute the control signal when iterations run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.