Abstract
Motor fault detection and diagnosis involves processing a large amount of information of the motor system. With the combined synergy of fuzzy logic and neural networks, a better understanding of the heuristics underlying the motor fault detection/diagnosis process and successful fault detection/diagnosis schemes can be achieved. This paper presents two neural fuzzy (NN/FZ) inference systems, namely, fuzzy adaptive learning control/decision network (FALCON) and adaptive network based fuzzy inference system (ANFIS), with applications to induction motor fault detection/diagnosis problems. The general specifications of the NN/FZ systems are discussed. In addition, the fault detection/diagnosis structures are analyzed and compared with regard to their learning algorithms, initial knowledge requirements, extracted knowledge types, domain partitioning, rule structuring and modifications. Simulated experimental results are presented in terms of motor fault detection accuracy and knowledge extraction feasibility. Results suggest new and promising research areas for using NN/FZ inference systems for incipient fault detection and diagnosis in induction motors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.