Abstract

With the advent of Autonomous Mobile Robots (AMRs) in public areas such as malls and airports, their harmonious coexistence with humans is crucial. AMRs must operate in a manner that ensures human safety, comfort, and acceptability to reduce stress. This is called Human Aware Navigation. This study introduces a framework for AMR navigation that prioritizes safety and human comfort in such environments, utilizing an enhanced Potential Field approach augmented by Fuzzy Inference Systems. To achieve a smooth AMR trajectory, the framework employs these systems based on AMR, human, and obstacle information. The proposed approach is tested across various scenarios, including complex, cluttered environments that mimic practical situations. Simulation results demonstrate that AMRs using the proposed method navigate human-rich environments safely and comfortably while mitigating common issues associated with Potential Field-based approaches, such as local minima and obstacles near the goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.