Abstract
In fuzzy modeling, it is relatively easy to manually define rough fuzzy rules for a target system by intuition. It is, however, time-consuming and difficult to fine-tune them to improve their behavior. This paper describes a tuning method for fuzzy models which is applicable regardless of the form of fuzzy rules and the used defuzzification method. For this purpose, this paper proposes a fuzzy neural network model which can embody fuzzy models. The proposed model provides the functions to perform fuzzy inference and to tune the parameters for the shape of antecedent linguistic terms, the relative importance degrees of rules, and the relative importance degrees of antecedent linguistic terms in rules. In addition, to show its applicability, we perform some experiments and present the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.