Abstract
Inductive learning is an efficient way to construct knowledge from the observation of a set of cases. It rises from the particular to the general and it provides a system with the capacity of finding by itself any useful knowledge to handle forthcoming cases. Given a set of observed cases (a so-called training set), an inductive learning algorithm is able to construct a more complex knowledge base. This paper focuses on one of the inductive learning algorithms that are most intensively used in data mining. This algorithm enables the construction of a fuzzy decision tree which represents a set of decision rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.