Abstract
This paper proposes a robust control scheme to accomplish the interaction control problem between a series elastic actuator (SEA) and a flexible environment. The adaptability of the controller to unknown variations and robustness of the controller during interaction of the system with environment are the main aims. The control scheme is based on a fuzzy impedance control approach and consists of an inner fast terminal sliding mode force control loop. An experimental setup is designed to prove the efficiency of the developed controller. The experimental results confirm that the proposed fuzzy logic controller guarantees the sensitivity of the controlled system to unpredictable variations. Moreover, by applying the fast terminal sliding mode algorithm for the inner force control loop, the system has faster convergence to the reference path compared with similar control methods found in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.