Abstract
Input variable selection is an essential step in the development of data-driven models. In order to establish a fuzzy model with high identification accuracy for complex nonlinear systems (such as variable load pneumatic loading system) in engineering, a novel fuzzy identification method is proposed, which is based on the selection of important input variables. Firstly, the simplified Two Stage Fuzzy Curves and Surfaces method is used to rank the original input variables according to their significance, and the variables which are most relevant to the output are selected as the input of the T-S fuzzy model. Then, the Fuzzy c-Means clustering algorithm and Particle Swarm Optimization algorithm are used to identify the antecedent parameters, and the Recursive Least Square method is used to identify the consequent parameters. The validity of the proposed fuzzy identification method is verified by two benchmark problems, and the results show that the accuracies of identified models have been improved significantly compared with the other existing models. Finally, the proposed approach is implemented to the practical data of an actual variable load pneumatic loading system, and preponderant trajectory matching performance is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.