Abstract

This paper investigates the fuzzy tracking control problem for a class of nonlinear networked control systems (NCSs) with a prescribed H(infinity) tracking performance. Such NCSs consist of a nonlinear controlled plant, a tracked plant, sensors, a controller, and an actuator. A Takagi-Sugeno fuzzy model is employed to represent the nonlinear controlled plant in the NCSs, and a tracked plant is described by a linear stable reference model. In transmission, both network-induced delay and packet losses are considered. By the parallel distributed compensation technique, a novel tracking model of the nonlinear NCSs is first established. Based on Lyapunov stability theory, a control design method that guarantees the prescribed H(infinity) tracking performance of the nonlinear NCSs is developed in terms of linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of our result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.