Abstract
Hierarchical Self-Organizing Networks are used to reveal the topology and structure of datasets. Those structures create crisp partitions of the dataset producing branches or prototype vectors that represent groups of data with similar characteristics. However, when observations can be represented by several prototypes with similar accuracy, crisp partitions are forced to classify it in just one group, so crisp divisions usually lose information about the real dataset structure. To deal with this challenge we propose the Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive networks which are able to reflect the underlying structure of the dataset, in a hierarchical fuzzy way. These networks grow by using three variables which govern the membership degree of data observations to its prototype vectors and the quality of the network representation. The resulting structure allows to represent heterogeneous groups and those that present similar membership degree to several clusters.KeywordsQuantization ErrorMembership DegreePetal LengthPrototype VectorPetal WidthThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.