Abstract
Clustering is an important method for data analysis. Up to now, how to develop an efficient clustering algorithm is still a critical issue. Unsupervised extreme learning machine is an effective neural network learning method which has a fast training speed. In this paper, a fuzzy granularity neighborhood extreme clustering algorithm which is based on extreme learning machine is proposed. We use fuzzy neighborhood rough set to develop a new feature selection method to eliminate redundant attributes and introduce the adaptive adjustment mechanism to solve the parameters of unsupervised extreme learning machine. Different from the existing clustering algorithms, the proposed algorithm can obtain a clustering result with minimum intra-cluster distance and maximum inter-cluster distance. The proposed algorithm and comparison algorithms are executed on the synthetic data sets and real data sets. The experimental results show that the proposed algorithm outperforms the comparison algorithms on the most data sets and the proposed algorithm is effective for clustering task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.