Abstract
Advanced fault detection and accommodation schemes are required for ensuring efficient and reliable operation of modern wind turbines. This paper presents a novel approach in designing a fault detection and diagnosis (FDD) and fault-tolerant control (FTC) scheme for a wind turbine using fuzzy modeling, identification and control techniques. First, an improved gain-scheduled proportional-integral (PI) control system based on fuzzy gain scheduling (FGS) technique for multi-input and multi-output wind turbine system is designed. Then, to accommodate sensor faults and based on a signal correction algorithm, an active fault-tolerant control system (AFTCS) is developed as an extension of the gain-scheduled PI control system. The AFTCS exploits the fault information from a model-based FDD scheme developed using fuzzy modeling and identification method. The proposed schemes are evaluated by a series of simulations on a well-known large off-shore wind turbine benchmark in the presence of wind turbulences, measurement noises, and different realistic fault scenarios. All results indicate high effectiveness and robustness of the designed control systems in both fault-free and faulty operations of the wind turbine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.