Abstract
The aim of this study is to introduce fuzzy filters of Sheffer stroke Hilbert algebra. After defining fuzzy filters of Sheffer stroke Hilbert algebra, it is shown that a quotient structure of this algebra is described by its fuzzy filter. In addition to this, the level filter of a Sheffer stroke Hilbert algebra is determined by its fuzzy filter. Some fuzzy filters of a Sheffer stroke Hilbert algebra are defined by a homomorphism. Normal and maximal fuzzy filters of a Sheffer stroke Hilbert algebra and the relation between them are presented. By giving the Cartesian product of fuzzy filters of a Sheffer stroke Hilbert algebra, various properties are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.