Abstract

The Classification of data is usually very large database that is the reason we want to classify the large data into different fragmentation of its same type. Already many algorithms have been used for classification like Id3, rule based algorithm, decision tree based algorithm, k-nearest-neighbor classification and so on. And these algorithm mainly used for classifying the algorithm accurately and the concept of fast classification is lagging behind in the previous algorithms. In this paper we analysis the efficiency and accuracy of using the entropy, id3 and SVM algorithm with our proposed method of using entropy and fuzzy classification with lower and upper approximation to reduce the computation work for more accuracy classification. We use id3 algorithm to classify the complex member that lie between the lower and upper approximation. Now we use SVM algorithm to classify the other data members thus by hybrid of both the algorithm with our approximation we get the best result of the algorithm Fuzzy Fast Classification FFC. The result of experiments shows that the improved fuzzy fast classification algorithm considerably reduces the computational complexity and improves the speed of classification particularly in the circumstances of the large data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.