Abstract

The concept of Pythagorean fuzzy sets (PFSs) was initially developed by Yager in 2013, which provides a novel way to model uncertainty and vagueness with high precision and accuracy compared to intuitionistic fuzzy sets (IFSs). The concept was concretely designed to represent uncertainty and vagueness in mathematical way and to furnish a formalized tool for tackling imprecision to real problems. In the present paper, we have used both probabilistic and nonprobabilistic types to calculate fuzzy entropy of PFSs. Firstly, a probabilistic‐type entropy measure for PFSs is proposed and then axiomatic definitions and properties are established. Secondly, we utilize a nonprobabilistic‐type with distances to construct new entropy measures for PFSs. Then a min–max operation to calculate entropy measures for PFSs is suggested. Some examples are also used to demonstrate suitability and reliability of the proposed methods, especially for choosing the best one/ones in structured linguistic variables. Furthermore, a new method based on the chosen entropies is presented for Pythagorean fuzzy multicriterion decision making to compute criteria weights with ranking of alternatives. A comparison analysis with the most recent and relevant Pythagorean fuzzy entropy is conducted to reveal the advantages of our developed methods. Finally, this method is applied for ranking China‐Pakistan Economic Corridor (CPEC) projects. These examples with applications demonstrate practical effectiveness of the proposed entropy measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.