Abstract
By considering the effect of the driving cycle on the energy management strategy (EMS), a fuzzy EMS based on driving cycle recognition is proposed to improve the fuel economy of a parallel hybrid electric vehicle. The EMS is composed of driving cycle recognition and a fuzzy torque distribution controller. The current driving cycle is recognized by learning vector quantization in driving cycle recognition. The torque of the engine and the motor is controlled by a fuzzy torque distribution controller based on the required torque of the hybrid powertrain and the battery state of charge. The membership functions and rules of the fuzzy torque distribution controller are optimized simultaneously by using particle swarm optimization. Based on the identification results of driving cycle recognition, the fuzzy torque distribution controller selects the corresponding membership function and rule to control the hybrid powertrain. The simulation research based on ADVISOR demonstrates that this EMS improves fuel economy more effectively than fuzzy EMS without driving cycle recognition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.